

A Framework for Understanding Management Options

Chad J. McGuire
Associate Professor and Chair
Department of Public Policy

Setting the Stage

- Contextualize management option categories
- Highlight key influences that affect management options (physical and nonphysical)
- Provide a way of thinking about issues/strategies discussed.

Management Option Categories

Do Nothing

Adapt by Physical Protection

Adapt to Anticipated Change Adapt to Observed Rate of Change

UNIVERSITY OF MASSACHUSETTS DARTMOUTH

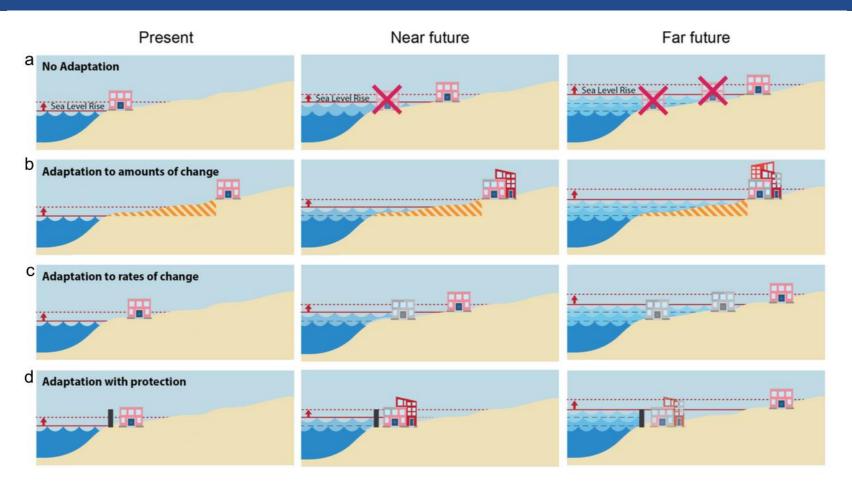


Figure 1. Choice of adaptation strategies. Investments close to the sea are more productive but at greater risk from sea-level rise. Rows represent different adaptation strategies and columns left-to-right indicate the progression of time from present to far future. (a) Strategies that ignore sea-level rise invest close to the shoreline and valuable assets are lost to the rising seas. (b) Strategies that consider adaptation only to some future amount of sea-level change produce a restricted zone that can eliminate valuable investment opportunities. (c) Strategies that consider adaptation to ongoing rates of sea-level change allow for an economically optimal outcome. (d) Strategies involving dikes or other types of coastal protection provide a temporary hold to sea-level rise but are eventually forced to adapt to ongoing rates of sea-level rise.

Environ. Res. Lett. 11 (2016) 104007

Factors Affecting Option

Physical Factors

- Rate of SL Rise
- Land Slope
- Frequency/Intensity Coastal Storms
- Physical Land Inventory
 - Undeveloped
 - Developed

Socio-Econ-Pol-Cul Factors

- Development Value of Land
 - Undeveloped
 - Developed
- Amount of Development
- Amount of Open Space
- Proximity of Development to Ocean
- Life Span of Building

Do Nothing	Adapt by Physical Protection
Adapt to Anticipated Change	Adapt to Observed Rate of Change

Factors Affecting Option

Synthesized Phys/Non-Phys Key Factors

Rate of SL Rise Land Slope Freg/Intensity

Inundation Rate

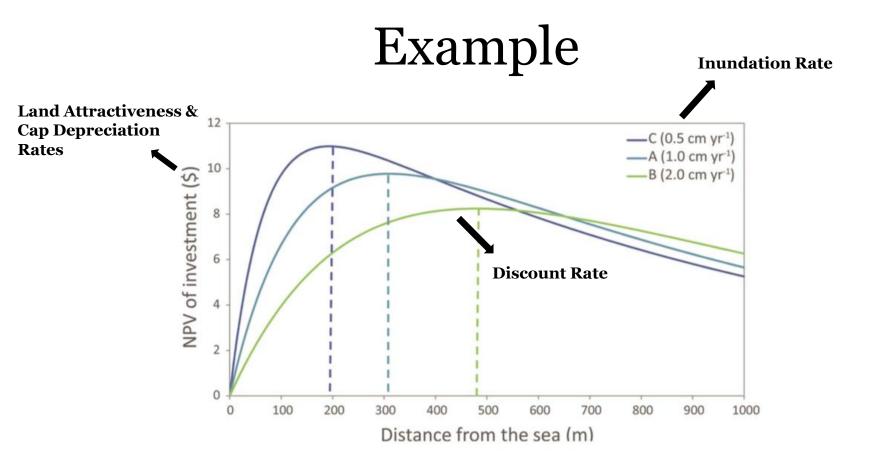
Development Value (undeveloped)

 \longrightarrow

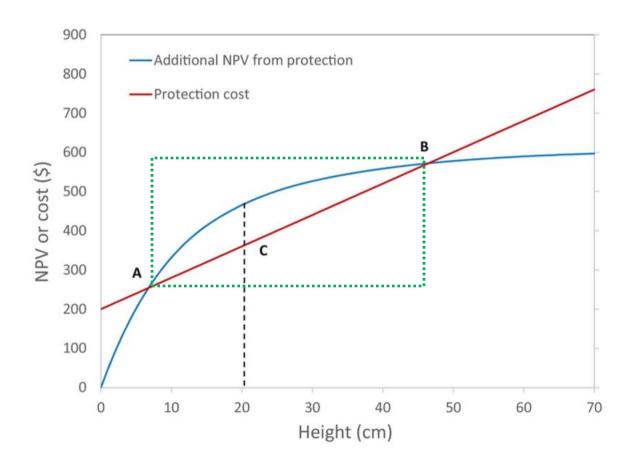
Land Attractiveness Rate

Development Value (developed land)

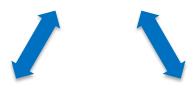
Capital Depreciation Rate


Evidence of SL Rise Freq/Intensity

Discount Rate


Do Nothing	Adapt by Physical Protection
Adapt to Anticipated Change	Adapt to Observed Rate of Change

Protection


The Planning Lens

- Planning for SL rise is a "Wicked"
 Problem
 - Consequences of <u>choice</u> are unknown
 - The choice will influence perception of the problem.
 - Focus on non-zero-sum solutions
 - Chance to modify choice under changing circumstances (physical, social, political, etc.)

Suggestions

Goal Formation

- What <u>can</u> we do?
- What should we do?

Problem Definition

- What is? (observed condition)
- What ought to be? (desired condition)

Equity Issues

- Not "a" or "the" public welfare
- No value free, true-false answers
- Look for degrees of freedom
 - Non-zero-sum solutions

Thank You!